

# Описание системы команд SCPI для Аттенюаторов управляемых электромеханических серии Д6М

ВЕРСИЯ 1.5

декабрь 2020 г.

АО «НПФ «Микран»

МИКРАН

#### 1. Система команд SCPI.

#### 1.1 Введение в SCPI.

Интерфейсы (*RS-232*, *USB*, *Ethernet*) поддерживают одинаковый набор команд, на основе стандарта SCPI (Standard Commands for Programmable Instruments). Это набор команд, ориентированный на обмен символьными сообщениями.

#### 1.2 Дерево команд.

Команды SCPI организованы в виде древовидных структур, образующих функциональную систему.

Начало каждой функциональной системы называется корнем, например "SYSTem" или "INPut". Каждая функциональная система может иметь подсистемы нижнего уровня, а конечные узлы системы называются листьями. Полная последовательность всех узлов от корня до листа плюс сам лист образует команду. Например, часть функциональной системы "SERVice" имеет вид:

:SERVice

:CONFig

**:IP?** 

:SNUM?

Показанная часть ветви "SERVice" имеет несколько уровней, где "IP" и "IDN" являются листьями, которые образуют две команды:

:SERVice:CONFig:IP < numeric>

МИКРАН

#### 1.3 Подсистемы.

Символ двоеточие (':') используется для разделения и понижения уровня подсистем. Например, в команде:

:SERVice:CONFig:IP

идентификатор "IP" является частью подсистемы "CONFig", которая в свою очередь является частью подсистемы "SERVice".

#### 1.4 Полный и сокращенный формат команд.

Каждое ключевое слово в спецификации команды имеет полный и сокращенный формат. Сокращенный формат выделен заглавными буквами. Например, полная спецификация команды:

:INPut:ATTenuation

Может быть записана:

:INP:ATT

Только полная или сокращенная форма отдельного ключевого слова является приемлемой, например следующая команда ошибочна:

:INPu:ATTenuation

## 1.5 Нечувствительность к регистру.

Команды являются нечувствительными к регистру. Заглавные и строчные буквы в спецификации команд используются только для различия сокращенной и полной формы команд. Например, следующие команды эквивалентны:

:INP:ATTenuation

:inp:att

:input:attenuation



#### 1.6 Параметры команд

#### 1.6.1 Числовые параметры (формат данных <numeric>)

Команды, для которых требуются числовые параметры, будут принимать все обычно используемые десятичные представления чисел, включая необязательные знаки и десятичные точки.

Форматы ввода и представления числовых параметров:

<NR1> - целые десятичные числа, например: 12, +23, -656;

<NR2> - десятичные числа с плавающей точкой, например: 12.571;

<NR3> - десятичные числа с плавающей точкой и показателем степени, например: 12.451E4, что соответствует числу 124510.

#### 1.6.2 Логические параметры (формат данных <boolean>)

Это параметры, принимающие два значения: логическое да или логическое нет (включено или отключено). В командах эти параметры записываются следующим образом:

ON или 1 – логическое да (включено)

OFF или 0 – логическое нет (выключено)

## **1.6.3** Символьные параметры (формат данных <charter\_data>)

Стандарт SCPI допускает ввод символьных данных в качестве параметров. Они могут иметь краткую и полную форму. Можно использовать верхний и нижний регистр набора текста.

Например, в следующей спецификации команды:

# **INPut:ATTenuation {MINimum|MAXimum|DEFault|<numeric>}**

возможные значения символьного параметра это — MAXimum, MINimum и DEFault. Ответы на запросы всегда возвращаются в краткой форме с использованием заглавных букв.

МИКРАН

Символьные параметры имеют полную и краткую форму и сокращаются по тем же правилам, что и команды ( 1.4 Полный и сокращенный формат команд.).

#### 1.6.4 Строковые параметры (формат данных <string>).

Параметры строки могут фактически содержать любой набор символов ASCII. Строка может начинаться и заканчиваться соответствующими кавычками – одинарными или двойными.

Например, имя таблицы в команде:

MEMory:ADC:SELect "table\_1"

### 1.7 Команды запроса.

Команды запроса используются для чтения значения параметра из прибора. После посылки команды запроса (содержащие '?') ожидается, что информация будет посланы в обратном направлении через соответствующий интерфейс удаленного управления.

Некоторые команды имеют две формы. Форма без вопроса записывает параметр, с вопросом считывает его. Например:

:INP:ATT 67

:INP:ATT?

### 1.8 Окончание строки.

Символ **LF**  $(0x0A, перевод строки, «\n») (ASCII) в последнем байте командной строки используется как терминатор строки.$ 

Так же может использоваться комбинация символов «\r\n» (0x0D, 0x0A - возврат каретки + перевод строки), **но в ответе прибора** все равно будет возвращаться **LF**.



#### 1.9 Условное обозначение синтаксиса в описании команд.

Обозначения символов, используемых в синтаксических выражениях:

- 1. Угловые скобки (<>) обозначают, что необходимо указать значение для заключенного в них параметра. Скобки в синтаксис команды не входят. Необходимо указать значение параметра (например, INP:ATT 70) или выбрать другой параметр, указанный в синтаксисе (например, INP:ATT MIN).
- 2. С помощью вертикальной черты ( | ) разделяются несколько доступных для выбора параметров для данной командной строки. Например, переменные MIN|MAX в команде INP:ATT MIN|MAX обозначает, что можно выбрать параметр MAX или MIN. Черта не отправляется с командной строкой.
- 3. В прямоугольные скобки ([ ]) заключаются некоторые элементы синтаксиса, например узлы и параметры. Это указывает на то, что элемент является необязательным и его можно пропустить, например, в команде [SENSor[1]]:AVERage ON|OFF, элемент SENSor[1] является необязательным и можно использовать команду AVERage ON|OFF. Скобки не отправляются с командной строкой.
- 4. Фигурными скобками ({ }) обозначаются параметры, которые могут не повторяться, повторяться один или несколько раз. Обычно они используются для отображения списков.



# Описание системы команд.

# \*IDN?

\*IDN?

| Считывает строку идентификации прибора.                        |
|----------------------------------------------------------------|
| Строка типа <string> (1.6.4) размером до 64 символов,</string> |
| функционально состоит из 4-х полей разделённых знаком ',':     |
| 1. Наименование производителя оборудования;                    |
| 2. Наименование модели оборудования;                           |
| 3. Серийный номер оборудования (10 знаков) — необязательный    |
| параметр, поле может содержать символ 0;                       |
| 4. Версия встроенного программного обеспечения (ВПО) -         |
| необязательный параметр, поле может содержать символ 0;        |
| Пример: «Micran,D6M-18-11P,1125180001,A.1.0»                   |
|                                                                |

# Примечания:

# \*RST

\*RST

| Описание | Перевод настроек прибора в состояние «по умолчанию». |
|----------|------------------------------------------------------|
| Запрос   | Нет                                                  |



#### \*ESR?

#### \*ESR?

| Описание | Запрос содержимого регистра событий (Standart Event Status Register). |
|----------|-----------------------------------------------------------------------|
| Запрос   | Значение формата $\leq$ NR1> в диапазоне от 0 до 255, например: +24.  |

# Примечания:

1. При выполнении запроса происходит сброс содержимого регистра событий.

#### \*CLS

#### \*CLS

|        | CLS (Clear Status) используется для сброса регистра событий (Standart Event Status Register) и очереди результатов выполнения команд прибором (очереди ошибок). |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Запрос | Нет                                                                                                                                                             |

# Примечания:

#### \*OPC

#### \*OPC?

| Описание | Состояние бита OPC (Operation Complete) регистра Standart Event |
|----------|-----------------------------------------------------------------|
|          | Status Register.                                                |
| Запрос   | Возвращает значение бита OPC (Operation Complete) регистра      |
|          | событий, в формате <nr1> (1.6.1):</nr1>                         |
|          | 1 – выполнение текущих операций завершено, прибор готов к       |
|          | выполнению новых команд.                                        |

# Примечания:

1. Опрос состояния данного бита используется для определения «занятости» прибора выполнением той или иной операции. Прибор не сформирует ответ (1) на запрос, пока не будут выполнены все команды.



# **INP:ATT**

[INPut]:ATTenuation < numeric>

[INPut]:ATTenuation?

| Описание            | Устанавливает или считывает текущее значение ослабления, вносимого аттенюатором Д6М.                                                                                                                                                                                                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Параметр            | Для ввода значений могут использоваться либо символьные параметры формата <charter_data> (1.6.3):  МАХітит - максимальное значение ослабления (в зависимости от модели);  МІNітит - минимальное значение ослабления (в зависимости от модели);  либо параметр типа <nr1> (1.6.1):  целое десятичное число в диапазоне от МІN до МАХ</nr1></charter_data> |
| Запрос              | Возвращает значение ослабления в формате <nr1> (1.6.1): для параметра MINimum - минимально возможное значение; Например: <b>ATT? MAX</b> для параметра MAXimum - максимально возможное значение; Например: <b>ATT? MIN</b> <numeric> - текущее значение уровня ослабления, например: <b>+23</b>. Например: <b>ATT?</b></numeric></nr1>                   |
| Начальное состояние | Максимальное ослабление в зависимости от модели.                                                                                                                                                                                                                                                                                                         |

# Примечания:

1. После подачи питания на Д6М будет установлено максимальное ослабление строенных аттенюаторов.



#### INP:INT:SECT:ON

[INPut]:INTernal:SECTion:ON {1|2|4A|4B|10|20|40}

| Описание            | Переключение одной из секций встроенных аттенюаторов в     |
|---------------------|------------------------------------------------------------|
|                     | положение ON (включить ослабление)                         |
| Параметр            | 1 2 4A 4B 10 20 40 — выбор одной из секций.                |
| Начальное состояние | После подачи питания на прибор и запуска ВПО, происходит   |
|                     | коммутация всех секций встроенных аттенюаторов в состояние |
|                     | ON.                                                        |

#### Примечания:

- 1. Одновременного переключения нескольких секций ослабления в состояние ON данной командой не предусмотрено.
- 2. Встроенные аттенюаторы содержат 2 секции ослабления номиналом 4 дБ, поэтому предусмотрено условное обозначение 4A и 4B.

#### INP:INT:SECT:OFF

[INPut]:INTernal:SECTion:OFF {1|2|4A|4B|10|20|40}

| Переключение одной из секций встроенных аттенюаторов в     |
|------------------------------------------------------------|
| положение OFF (выключить ослабление)                       |
| 1 2 4A 4B 10 20 40 — выбор одной из секций.                |
| После подачи питания на прибор и запуска ВПО, происходит   |
| коммутация всех секций встроенных аттенюаторов в состояние |
| ON.                                                        |
|                                                            |

- 1. Одновременного переключения нескольких секций не предусмотрено.
- 2. Встроенные аттенюаторы содержат 2 секции ослабления номиналом 4 дБ, поэтому предусмотрено условное обозначение 4A и 4B.



#### INP:INT:SECT:STAT

[:INPut]:INTernal:SECTion:STATe? {1|2|4A|4B|10|20|40}

| Описание | Запрос состояния секции встроенных аттенюаторов. |
|----------|--------------------------------------------------|
| Параметр | 1 2 4А 4В 10 20 40— выбор интересующей секции    |
|          | Переменная типа <nr1> (1.6.1),</nr1>             |
| Ответ    | 1 — секция находится в положении ON,             |
|          | 0 — секция находится в положении OFF.            |

- 1. Данная команда предусматривает запрос состояния только одной секции встроенных аттенюаторов.
- 2. Встроенные аттенюаторы содержат 2 секции ослабления номиналом 4 дБ, поэтому предусмотрено условное обозначение 4A и 4B.



# **SERV:CONF:SNUM**

SERVice: CON Figure: SNUMber?

| Описание | Считывает серийный номер Д6М.                                    |
|----------|------------------------------------------------------------------|
|          | Например: 1125190001, содержит идентификатор прибора (1125),     |
|          | год производства (19), номер в производственном ().              |
| Запрос   | Возвращает серийный номер Д6М, формат <string> (1.6.4),</string> |
|          | например, 1125161234                                             |

Примечания:

# **SERV:CONF:TYPE**

SERVice: CONFigure: TYPE?

| Описание | Считывает модель аттенюатора, которая определяет частотный       |
|----------|------------------------------------------------------------------|
|          | диапазон ослабления электрического сигнала и тип СВЧ разъема     |
|          | на передней панели.                                              |
|          | Например: D6M-18-11P, включает тип разъема N, розетка.           |
| Запрос   | Возвращает модель аттенюатора, формат <string> (1.6.4),</string> |
|          | например, D6M-26-13P                                             |



#### SYST:COMM:LAN:ADDR

SYSTem:COMMunication:LAN:ADDRess < numeric>

SYSTem: COMMunication: LAN: ADDRess?

| Описание | Команда установки/запроса сетевой адрес прибора в формате IPv4.                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Параметр | Тип <nr1> (1.6.1), 4 десятичных числа от 0 до 255 разделённых точками.  Например (установка сетевого адреса):  SYST:COMM:LAN:ADDR 169.254.0.254</nr1> |
| Запрос   | Возвращает сохраненный в энергонезависимой памяти устройства сетевой адрес прибора в формате IPv4, например, 192.168.0.168                            |

- 1. При использовании DHCP и DNS сервера параметры сети (сетевой адрес, маска подсети, адрес шлюза) выдаются прибору динамически в соответствии с его сетевым именем (см. SYST:COMM:LAN:HNAME?). Для получения используемого прибором сетевого адреса (полученным от DNS-сервера), используйте команду SYST:COMM:LAN:CURR:ADDR?.
- 2. При инициализации прибора в сети без DHCP/DNS сервера будет установлен статический сетевой адрес, записанный в энергонезависимую память прибора.



#### SYST:COMM:LAN:SMAS

SYSTem: COMMunication: LAN: SMASk < numeric>

SYSTem:COMMunication:LAN:SMASk?

| Описание | Команда установки/запроса маски подсети прибора в формате IPv4.                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| Параметр | Тип <nr1> (1.6.1), 4 десятичных числа от 0 до 255 разделённых точками. Например: SYST:COMM:LAN:SMAS 255.255.25</nr1>       |
| Запрос   | Возвращает сохраненную в энергонезависимой памяти устройства маску подсети прибора в формате IPv4, например, 255.255.255.0 |

- 1. При использовании DHCP и DNS сервера параметры сети (сетевой адрес, маска подсети, адрес шлюза) выдаются прибору динамически в соответствии с его сетевым именем (см. SYST:COMM:LAN:HNAME?). Для получения используемой маски подсети, используйте команду SYST:COMM:LAN:CURR:SMAS?.
- 2. При инициализации прибора в сети без DHCP/DNS сервера будет установлена маска подсети, записанная в энергонезависимую память прибора.



#### SYST:COMM:LAN:DGAT

SYSTem:COMMunication:LAN:DGATeway < numeric>

SYSTem:COMMunication:LAN:DGATeway?

| Описание | Команда установки/запроса адреса сети в формате IPv4.                                                                 |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Параметр | Тип <nr1> (1.6.1), 4 десятичных числа от 0 до 255 разделённых точками. Например: SYST:COMM:LAN:DGAT 169.169.0.1</nr1> |  |  |
| Запрос   | Возвращает сохраненный в энергонезависимой памяти устройства адрес сети в формате IPv4, например, 169.169.0.1         |  |  |

- 1. При использовании DHCP и DNS сервера параметры сети (сетевой адрес, маска подсети, адрес шлюза) выдаются прибору динамически в соответствии с его сетевым именем (см. SYST:COMM:LAN:HNAME?). Для получения текущего адреса сети, используйте команду SYST:COMM:LAN:CURR:DGAT?.
- 2. При инициализации прибора в сети без DHCP/DNS сервера будет установлен адрес сети, записанный в энергонезависимую память прибора.



#### SYST:COMM:LAN:CURR:ADDR

SYSTem:COMMunication:LAN:CURRent:ADDRess < numeric>

SYSTem: COMMunication: LAN: CURRent: ADDRess?

| Описание | Команда запроса текущего сетевой адрес прибора в формате |  |  |  |
|----------|----------------------------------------------------------|--|--|--|
|          | IPv4.                                                    |  |  |  |
| Запрос   | Возвращает используемый в данный момент сетевой адрес    |  |  |  |
|          | устройства в формате IPv4, например, 192.168.0.168       |  |  |  |

### Примечания:

1. При использовании прибора без интерфейса ETHERNET (сетевой кабель не был подключен), в ответ на команду будет иметь следующий вид: 0.0.0.0

#### SYST:COMM:LAN:CURR:SMAS

SYSTem:COMMunication:LAN:CURRent:SMASk < numeric>

SYSTem: COMMunication: LAN: CURRent: SMASk?

| Описание | Команда запроса текущей маски подсети прибора в формате IPv4. |  |  |
|----------|---------------------------------------------------------------|--|--|
| Запрос   | Возвращает используемую в данный маску подсети в формате      |  |  |
|          | IPv4, например, 255.255.255.0                                 |  |  |

#### Примечания:

1. При использовании прибора без интерфейса ETHERNET (сетевой кабель не был подключен), в ответ на команду будет иметь следующий вид: 0.0.0.0



#### SYST:COMM:LAN:CURR:DGAT

SYSTem:COMMunication:LAN:CURRent:DGATeway < numeric>

SYSTem:COMMunication:LAN:CURRent:DGATeway?

| Описание | Команда запроса адреса сети в формате IPv4.          |  |  |  |  |
|----------|------------------------------------------------------|--|--|--|--|
| Запрос   | Возвращает используемый в данный момент адрес сети в |  |  |  |  |
|          | формате IPv4, например, 192.168.0.1                  |  |  |  |  |

# Примечания:

1. При использовании прибора без интерфейса ETHERNET (сетевой кабель не был подключен), в ответ на команду будет иметь следующий вид: 0.0.0.0

#### SYST:COMM:LAN:CONT?

SYSTem:COMMunication:LAN:CONTrol?

| Описание | Команда запроса номера сетевого порта прибора для обмена SCPI  |
|----------|----------------------------------------------------------------|
|          | командами.                                                     |
| Запрос   | Возвращает номер сетевого порта в формате <nr1> (1.6.1).</nr1> |
|          | Например: 5025                                                 |
|          |                                                                |

#### Примечания:

#### SYST:COMM:LAN:MAC?

SYSTem:COMMunication:LAN:MAC?

| Описание | Команда                           | запроса    | МАС-адреса      | прибора,    | сохраненного  | В |
|----------|-----------------------------------|------------|-----------------|-------------|---------------|---|
|          | энергонезависимую память прибора. |            |                 |             |               |   |
| Запрос   | Возвраща                          | ет номер с | етевого порта в | формате < N | NR1> (1.6.1). |   |
|          | Например: 0-1E-F-1-C-11           |            |                 |             |               |   |



# **SYST:ERR?**

SYSTem:ERRor?

| Описание            | Считывает сообщения из очереди ошибок выполнения команд прибором.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ответ               | <ul> <li><numeric>, <string></string></numeric></li> <li>Где:</li> <li><numeric> код ошибки</numeric></li> <li><string> текстовое описание ошибки</string></li> <li>Например:</li> <li>+0, "NO ERROR" команда выполнена</li> <li>успешно</li> <li>-108, "PARAMETER NOT ALLOWED" введённый параметр не</li> <li>поддерживается прибором</li> <li>-222, "DATA OUT OF RANGE" значение введённого параметра</li> <li>вне поддерживаемого диапазона</li> <li>-400, "QUERY ERROR" ошибка формирования ответа прибором</li> </ul> |  |  |  |
| Начальное состояние | +0, "NO ERROR"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |



# **SYST:PRE**

# SYSTem:PREset DEFault

| Описание            | Установка параметров Д6М в состояние «по умолчанию».                                                                    |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Параметр            | Параметр в формате <character_data> (1.6.3):  DEFault – перевести параметры в значения «по умолчанию».</character_data> |  |  |
| Начальное состояние | DEF                                                                                                                     |  |  |



## Управление внешними переключателями.

Разъём «ВНЕШНИЙ АТТЕНЮАТОР» (рисунок 1) на задней панели прибора предназначен для управления электромеханическими переключателями (разъём содержит 4 группы для подключения) с функцией **Latching** (переключатели с фиксацией положения после переключения).

Управляющее воздействие – коммутация линии ON/OFF на потенциал «земля».

К линиям разъема допускается подключения электромеханических переключателей с номинальным напряжением коммутации +24 В и током коммутации не более 0,125 А, длительность управляющего сигнала не более 0,08 с.

Контроль внешними переключателями осуществляется либо удаленно по системе команд SCPI (через интерфейсы RS-232, ETHERNET, USB), либо через меню экрана на передней панели прибора «Дополнительные секции».

Функциональное назначение выводов разъёма «ВНЕШНИЙ АТТЕНЮАТОР»:

- 1. Напряжение коммутации переключателя +24 В.
- 2. Переключатель D OFF.
- 6. Переключатель D ON.
- 3. Переключатель С ОFF.
- 7. Переключатель C ON.
- 4. Переключатель В ОFF.
- 8. Переключатель В ON.
- 5. Переключатель A OFF.
- 9. Переключатель A ON.



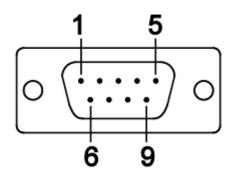



Рисунок 1. Назначение контактов разъема «Внешний аттенюатор».

# **INP:EXT:SECT:ON**

[:INPut]:EXTernal:SECTion:ON  $\{A|B|C|D\}$ 

| Описание  | Коммутация линии ON на потенциал «земля».                  |  |  |  |
|-----------|------------------------------------------------------------|--|--|--|
| Параметр  | A B C D — выбор одной из групп, к которой относится линия. |  |  |  |
|           | После подачи питания на прибор и запуска ВПО, происходит   |  |  |  |
| Начальное | коммутация всех линий ON всех групп на потенциал «земля».  |  |  |  |
| состояние | Например, установить переключатель A в положение ON:       |  |  |  |
|           | INP:EXT:SECT:ON A                                          |  |  |  |

Примечания:

# INP:EXT:SECT:OFF

[:INPut]:EXTernal:SECTion:OFF {A|B|C|D}

| Описание  | Коммутация линии OFF на потенциал «земля».                 |
|-----------|------------------------------------------------------------|
| Параметр  | A B C D – выбор одной из групп, к которой относится линия. |
| Начальное | После подачи питания на прибор и запуска ВПО, происходит   |
| состояние | коммутация всех линий ON всех групп на потенциал «земля».  |



# INP:EXT:SECT:STAT

 $[:INPut]: EXTernal: SECTion: STATe? \ \{A|B|C|D\}$ 

| Описание | Запрос состояния электромеханических переключателей.     |  |  |  |
|----------|----------------------------------------------------------|--|--|--|
| Параметр | A B C D – выбор интересующей группы                      |  |  |  |
|          | Переменная типа <nr1> (1.6.1),</nr1>                     |  |  |  |
|          | 1 — последнее управляющее воздействие – коммутация линии |  |  |  |
| Ответ    | ON на потенциал «земля»,                                 |  |  |  |
|          | 0 — последнее управляющее воздействие – коммутация линии |  |  |  |
|          | OFF на потенциал «земля».                                |  |  |  |